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!. Introduction 

Probably the most important problem in the quantum logic approach to 
general quantum mechanics is to find physically reasonable postulates for a 
quantum logic so that it may be represented by the logic of  all closed sub- 
spaces of  a Hilbert space. Practically all investigators in this t~eld have at 
least considered this problem (cf. Birkhoff & von Neumann, 1936; Gudder, 
1969, 1970; Gunson, 1967; Jauch, 1968; Mackey, 1963; MacLaren, 1964; 
Piron, 1964; Pool, 1968b; Varadarajan, 1968; Zi~rler, 1961). The best 
result known to this author is due to Piron (1964) (with the help ofAraki & 
Varadarajan, 1968) and is based on the fundamental theorem of projective 
geometry. He is able to construct a Hilbert space projective representation 
for so-called projective logics where a projective logic L is an orthomodular 
complete atomic lattice which satisfies: 

(i) i ra  # 0 in L is the supremum of a finite set of  atoms then [0,a] is a 
geometry of  finite rank; 

(i0 if x, a ~ L, a ~ 0, :~ I and x is an atom, then there are atoms y, 
z e L s u c h  that y < a, z < a '  and x < y v  z; 

(iii) there is at least one a e L such that 4 < dim (a) < ~.  

In the author's opinion Axiom (i) is particularly unfortunate, since it 
requires that the lattice [0,a] be modular, and there seems to be no physical 
justification for such an axiom. 

In this paper the author suggests some axioms which he feels are physically 
more reasonable and which imply some of those given above. (In particular 
that L is a complete atomic lattice satisfying (i).) These new axioms deal 
with superpositions of  states and the superposition principle. 

2. A Superposttion Principle 

Let L be an orthocomplemented poset. That is, L is a partially ordered set 
with first and last elements 0,  1 respectively and a complementation a --~ a ~ 
satisfying (i) a" = a ,  ( i i )  a v a'  = i ,  (iii) i fa  < b, t h e n  b' < a' .  W e  also assume 
that if at is a sequence of  mutually disjoint elements (i.e., a~ < aj ~ i ~ j ) ,  
then Vai exists. A map m from L into the real unit interval [0,1] which 
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satisfies re(l) = 1 and mt~/a,) -- ~ m(a~) if the a,'s are disjoint is a state on 
L. I f m  is a state which cannot be written in the form m = cml + (! - c)m2. 
where 0 < c < 1 and m, and m2 are distinct states, then m is called a pure 
state. We denote the set of  states on L by M and the set of  pure states on 
Lby P. l f a  c L,m c P, defineP, = (m ~ P:m(a) = I},L,  = (a E L :m(a) = 1}. 
l f P , _c P ~  implies a < b  a n d / . ~  _~L,~ implies m, =m2, we call (L,M) a 
quantum logic. We say that a, b E L are compatible if there are mutually 
disjoint elements a i, b~, c such that a = a I v c and b = bl v c. In the sequel 
(L, M) will always denote a quantum logic. 

If  S c M, a ~ L we write S(a) = ~ if re(a) = ~ for all m ~ S. If S __q M, 
mo 6 M, then mo is a superposition of  states in S if S(a) = 0 implies too(a) = 0 
for all a E L. If S_~ P we denote by S -  the set of  all pure states which are 
superpositions of  states in S, and we define ~g" = {S _c p:  S = S -  }. Under set 
inclusion ..d / becomes a poset with first and last elements ~,, P respectively. 
We say that the superpositionprinciple holds in (L, M) if J r '  is isomorphic to 
L, i.e., if these exists a one-one map from de' onto L that preser~'es order. 
(This definition is due to Varadarajan, 1968.) It is shown by Gudder (1969) 
t h a t , ~  is a complete atomic lattice. We thus have the following theorem. 

Theorem 2.1 
If  the superposition principle holds in (L, M) then L is a complete atomic 

lattice. 
We also have a kind ofconverse to Theorem 2.1. I fLt ,  Lz are two ortho- 

complemented posets we say they are isomorphic if there is an order and 
complementation preserving isomorphism from L t onto L2. 

Theorem 2.2 
If(L, M) is a quantum logic and L is a complete lattice for which m(a~) = !, 

a ~ A ,  implies m(Aa~)= 1, then ` /  has an orthocomplementation and 
L and ` / a r e  isomorphic. In particular the superposition principle holds 
in (L,M).  

Proof." for S~. .~ '  let a s = A { a 6 L : S ( a ) =  1}. Then a s e L  is the smallest 
element for which S(as) = 1. Define S'  = {m ~ P:m(as) = 0}. The,i S '  r 
Suppose m(as) = 1, m e P. If  S(b) = 0, then S(b') = 1, so as < b'. Hence 
m(b') = 1 and re(b) = O. Since S = S -  we have m ~ $, and hence re(as) = 1 
if and only if m ~ S. We now show that S --~ as is an isomorphism o f . /  
onto L. Suppose SI, $2 6~K and Sl # $2. If m ~ St and m r $2, then 
re(as,)= I, while re(as2)# 1. Thus, as, #as~ and the map is one-one. 
Let a r L and S = L , ~  ` / .  If S=/?,  then a = 0  and a=a~. i f S ~  we 
claim that a - as. Certainly as < a. If as ~ a, then there is mo 6 P such that 
too(a) ~ 1  and too(as)# 1. But mo 6 S, which is a contradiction. Now 
suppose S, _~ $2. If  m ~ P and m(as~) = 1, then m ~ S,. Hence, m ~ $2 and 
re(as2) = 1. Therefore, as, < as~. Conversely, suppose as, < as~, If m ~ S~. 
then re(as,) -- I, so m(as~) = !. Therefore, m ~ S and St -~ Sz. Finally, the 
following statements are equivalent: re(as')= 1, m(as)=O, m 6 S ' ,  
re(as,) = 1, for m ~ P. Hence as' = as,. 
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The  condit ion in this theorem that m(a~)= i implies m(Aa~)= 1 has 
been used by Jauch (1968) and Piron (1964) in their formulat ion o fquan tum 
mechanics. 

3. Modularity 

In the sequel we assume that (L, M)  is a quantum logic in which the super- 
position principle holds. In the last section we showed that L is then a 
complete atomic lattice. Notice that under the isomorphism pure states in M 
correspond to atoms in L. 

We say that m e P is a minimal superposition of  mr e P,  i = i . . . . .  n, if 
m e { m l : i =  1, . . . ,  n}- but  mr for  any j =  1 . . . .  , n. Our next 
postulate is called the minimal superposition postulate: if m is a minimal 
superposit ion ofml ... . .  m, and (L J )  is a parti t ion of  {1 . . . .  , n} (i.e { !, . . . .  n} = 
I U J ;  113 J = ~ ; / ,  J ~ ~), then {m, m,: i e I}- f) {mj :j e J}- ~ ~. Our only 
comment  on the physical nature o f  this postulate is that it is iatuitively 
fairly clear. Indeed, suppose m e {m~:i = l . . . .  , n}- is a minimal super- 
position and (/, J )  is a parti t ion of  {l . . . . .  n}. If  {m, mr: i e I}-  13 {m~ :j e J}-  = 
~, then superpositions o f  m, m ,  i e I are not in {mj:j ~ J}- and are thus 
"independent '  o f  m j, j e 3'. Thus  m j, j e J are not needed to describe super- 
Positions o f  m, m ,  i e I so we would have m e {mr: i e I}- ,  which contradicts 
the minimality. 

Notice that  the minimal superposition postulate holds in the usual 
l t i Ibert  space framework. Indeed, in this case m, ma i = l . . . .  , n may be 
represented by unit vectors if, ~,, i = l , . . . ,  n. fm is a minimal superposition 
o f  r e ,  i = l , . . . ,  n, we have 

l-I 

for  non-zero complex numbers c~ and distinct vectors ~ ,  i = I . . . . .  n. Then 
for  any part i t ion (/, J )  o f  {1 . . . .  , n} we have 

I * 1  J t l  

Normalizing the vector 

7. 
JGJ 

we get a pure state in {m, m F i e  I}- N {mj:jeJ}-.  
In the lattice L we say that an a tom a is a minimalsuperposition o f  atoms 

at . . . . .  an i f  
el 

a <  V a~ 
I - I  

but 
a ~  V al 



| 0 2  STANLEY P. GUDDER 

for a n y j  = I . . . . .  n. The minimal superposition postulate is thus equivalent 
to the following statement: if a is a minimal superposition of at, .... a,, 
then for any partition (I, J)  of {1, . . . .  n} we have 

Cy o,) 0 
The main result of  this section is that the minimal superposition postulate 

on (L, a t )  implies [0,a] is modular for any a of f.nite rank. Let us now 
demonstrate that the converse holds. That is, let ~ be a modular lattice 
with a first element 0 and let a, a~ . . . .  , a, be atoms in.~'. Suppose 

a <  V a, 
| - I  

is a minimal superposition. Now assume ( l , J )  is a partition of (1 . . . . .  n} 
and that 

t t i  I V~J I 

Then by the modular law we have 

o.(ov vo>  ̂(Va, v v o,Iv vo,=v o, 
| e l  / ~ J ~ l  Ir / J ( J  J i ~ !  i r  

which is a contradiction. Hence 

and the minimal superposition postulate holds. 
In the sequel we assume that (L, M) is a quantum logic in which the super- 

position principle and the minimal superposition postulate hold. We say 
that atoms a~ E L, i = 1 . . . .  , n are independent if ai ~ V {aj~j # i} for any 
1 = l , . . . , n .  

l, emma 3.1 
Suppose a~ . . . . .  a, are independent atoms and b is an atom. Ifa~ < by  

a2 v .-. v a, then 

b < V  ai 
I - I  

Proof." There is a minimal subset ! c {2 . . . . .  n} such that 

a, < b y  V a~ 

Since this is a minimal superposition it follows from the minimal super- 
position postulate that 

b A ( a v  V, , , a , )~O 
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Since b is an atom 

b ~  V a~ 
I,ml 
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Corollary 3.2 

I fa i ,  . . . .  a,  are independent atoms and b is an atom satisfying 

/,4: 
I - I  

then {b, a4:i= !, . . . ,  n} are indePendent. We say that a finite set of  atoms 
al . . . .  , a,  is a basis for a e L ifa~ . . . .  , a,, are independent and 

# 

a---- V a~ 
I - !  

Lemma 3.3 

Let a, . . . . .  a. be a basis for a 6 L. Let bl, . . . .  b, be atoms in a and suppose 
a > r. Then b, . . . . .  b, are not independent. 

/~oof- Suppose bi . . . .  , b, are independent. Now 

b i g  V a~ 

and there is a minimal subset It c {1 . . . . .  r} such that 

b~< V a~ 
i e i  

Without loss of  generality assume 1 e I1. Then b, ~ V { a j : j e  Ii -- {1}} and 
by Corollary 3.2, {b,a,:i  e I, - {1}} are independent. Applying Lemma 3.1 
we have at < bi v V { a j : j e  Ii - {1}} and hence 

P 

a = bl v V a~ 
i - 2  

Continuing by induction, suppose 

a = b i  v b2v . . . v  b~v 

Then 

P 
V a~ 

| - I + l  

Then there are minimal subsets/~+j _c { !+  1 . . . .  , r} and J_c {1, . . . , /}  such 
that 

bi+: < V bj v V {al:i e li+i} 
$GJ 

bL+l<bt v . . . v  b~v V a~ 
I - f + |  
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Without  loss o f  generali ty assume [ + 1 E ll+l. It follows f rom minimali ty  
that  {b~,a4:jr i r  11+!} are independent .  Then  

b,+l ~ V b j v V { a , : i ~ I , + l - { / +  1}} 
J I J  

and f rom Corol lary  3.2 {bi+t,bj, at'.j ~ J, i ~ I~+l - {i + I}} are independent .  
Again by l_emma 3.1, 

az+l<b,§ V b~vV{a,:i~l,+~-{l+ 1}} 
[ I S  

Hence  

a =  bl v . . .  v b~§ v V a~ 
i . i+ '~ 

By induction we then find that  

But then 

a =  ~/ bt 
[=l 

b,+l < V bl 
I - I  

wHch  is a contradiction.  Hence bi . . . . .  b.  are not  independent .  

Corollary 3.4 
I f  {a, : i  = I ,  . . . .  r} and {b,: i = 1 . . . . .  n} are bases for  a,  then r = n. 
I r a  ~ L has a ba~is ai . . . . .  a , ,  then n is the dimension o f  a and denoted by 

d(a) = n. I r a  has a basis we say that  a isfinite dimensional. A set o f  a toms 
ai < a, i--- 1 . . . . .  n is a maximalset  of independen t  a toms  if they are indepen- 
dent  and not  in a larger set o f  independent  a toms  in a. I f  a < b we use the 
nota t ion  b - a = b ^ a ' .  

Lemma  3.5 
I f  a, <a ,  i =  I . . . . .  r is a maximal  set o f  independent  a toms ,  then al, 

1 = 1 , . . . ,  r ,  is a basi~ for  a. 

Proof" Suppose 

Then  there is an a tom 

Then  

V a t < a  
i - !  

b~a- V a~ 
I-l 

r 
b ~  V a i  

I - I  

and by Corol lary  3.2 {b,a~:i = I,  . . . .  r} are independent  which is a contra-  
diction. 
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P 
a =  W ai 

i - !  

where the a{s  are a toms,  then a is finite dimensional.  

Proof" Find a subset o f  {ai:i = ! . . . . .  n} which forms a basis for  a. 

Corollary 3.7 
l f d ( a )  = n and  a ,  i = l ,  . . . .  n, are independent  a toms, then {a~: i = 1 . . . . .  n} 

Ls a basis  for  a.  

Proof" l fa~ . . . .  , a . ,  b are independent  for  some a tom b < a we get a contra-  
dict ion to L e m m a  3.3. Therefore,  a~ . . . . .  a .  is a maximal  set o f  independent  
a toms  and by L e m m a  3.5 must  be a basis, 

Corollary 3.8 
I f a  < b and  d(a) = d(b), then a = b. 

Proof." Let ai . . . .  , a ,  be a basis for  a. Then  by corol lary 3.7, ai . . . . .  a ,  is a 
basis for  b, and hence a = b. 

Corollary 3.9 
I r a  < b and b is finite dimensional,  then d(a) < d(b). 

Proof" Suppose r = d(b) and az . . . .  , a ,  are independent  a toms  in a, where 
n > r. This  would contradict  L e m m a  3.3. Hence every maximal  set o f  
independent  a toms  in a has at  most  r elements. Applying L e m m a  3.5, 
d(a) < r. 

Recall that  a dimension function d o n  a lattice . ~  is a real valued function 
o n . ~ '  with the propert ies :  (i) d(O) = O, d(a) > 0, for  all a ~ . ~ ;  (ii) i f a  < b  
and  a # b, then d(a) < d(b); (iii) d(a v b) + d(a ^ b) = d(a) + d(b) for  all 
a, b 6 . ~ .  

Theorem 3.10 
Let  c e L  be finite dimensional.  Then d i s  a dimension function on [0,e]. 

Proof" Proper ty  (i") is trivial, and (iO follows f rom our  previous corollaries. 
We now prove  proper ty  (iii). Suppose a, b 6 [0, c] and a ^ b = 0. Le t  {a~} be 
a basis for  a and {ba} a basis for  b. Then a v b = V al v V b s. N o w  suppose 
{at,ba} are not  independent.  Then  there is a b,, say, such that  

b , , g v a ,  v v 
J~k 

There  are minimal  index sets I, J such that  

&< V a , v  V 
I c I  J ~ J  



106 s'l'~qt_rr v. Gtn~Eg 

N o w  from the minimality of  I and J we have that {a, b j : iE  l, j E J }  are 
independent and by the minimal supcrposition postulate 

IGI  ] 

This contradicts a ^ b -- 0, so {a,,bj} are independent and hence form a basis 
for a v b. Thus d(a v b) + d(a ^ b) = d(a) + d(b) in this case. In the general 
case we have 

av.b= [(a--a^ b) v (at, b)lv [(b-a^ b)v (a^ b)] 
=(a.a^ b)v (a^ b)v (b-a^ b) 

Now 

(a-a^ b)^ (b-av b)= [a^ (a^ b)']^ [b^ (a^ b)'l=(e^ b)^ (a^b)'=O 

Thus by our previous work 

d(a v b) = d(a - a ^ b) + d(a ^ b) + d(b - a ^ b) =d(a)  + d(b) - d(a ^ b) 

Since modularity and the existence of  a dimension function are equivalent 
0faradarajan, 1968) we have the following corollary. 

Corollary 3.11 
I f a  e L  is finite dimensional, then [0,a] is a modular lattice. 

4. Conchaions 

We say that (L,M) is comp!etely irreducible if  for any interval [0,a] _~ L 
the only elements c f  [0,a] which are compatible with all elements of [0,a] 
arc 0 and a. This corresponds physically to the fact that there are no super- 
selection rules in [0,a] for all a ~ L .  It follows (cf. Varadarajan, 1968, 
Lcmma 2.!0) if(L, M) is completely h'reducible and satisfies the assumptions 
o f  the previous section, that [0,a] is a geometry for any finite dimensional 
element a E L. We now have the following representation theorem. 

Theorem 4.1 
Let (I,21#) be a completely irreducible quantum logic which satisfies the 

superposition principle, the minimal superposition postulate and suppose 
there is an a ~ L with 4 < d(a) < ~.  Then there exists a division ring D, 
an involutive anti-automorphism 0 of  D, a vector space V over D, and a 
definite symmetric 0-bilinear form <-,-) on V x Vsuch thatL is isomorphic 
to the orthocomplemented lattice of  all (-,-) dosed subspaces of It. 

In this theorem we have defined <-,-) closed subspaces in the following 
way. I f T i s  a subspacr we define T • 2- {u ~ V : (u , x )  = 0 for all x ~ T} and 
T is <-,'> closed if T = T -L • For the proof of  this thcorem the reader is 
referred to Varadarajan (1968, p. 179). 

It is, of  course, important to obtain more information about the division 
ring D. It is a classical result that if D has certain regularity properties 
(which it must in physical situations) then D is either the reals R, the 
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complexes C, or the quaternions Q. For example, it is proved by 
Pontryagin (1932) that if D is a connected loc~!ly compact division ring in 
which addition and multiplication form topological groups, then D is R, 
C or Q. It can be shown (Varadarajan, 1968) that the division ring D in 
Theorem 4.1 is unique up to isomorphism. We call this essentially unique 
division ring the division ring associated with (L, M). 

Theorem 4.2 
Let (L,M) be a quantum logic satisfying the hypotheses of  Theorem 4.1 

and also the following two conditions: (i) the division ring D associated 
with (L, M) is R, C or Q; (ii) if a, b ~ L, a ~ 0, # 1 and b is an atom, then 
thereare atoms bj, b2 ~ L such that bj < a, b: < a '  and b < bj < b2. Then L 
is isomorphic to the set of all closed subspace of a Hilbert space over D. 

It is clear that the conditions given above are also necessary. For a proof 
o f  this theorem see Varadarajan (1968, Theorem 7.44). 

5. Remarks 

The hypotheses of Piron's theorem are stated differently by Piron (1964) 
than by Varadarajan 0968). The main difference is that Axiom (i) of 
Section 1 is replaced by the covering law: i f a  is an atom and b < e < b v a, 
then c = b or c = b v a. Piron shows that the covering law implies Axiom (i). 
However, the authoc has seen no phenomenological justif.cation for the 
covering law, so it seems to have no advantage over Axiom (i).t In any case 
our minimal superposition postulate can be used as an alternative to the 
covering law. A closely related axiom is the semi-modularity, which states 
that if (a,b) is a modular pair then so is  (b,a). Pool (1968b) has given a 
physical justification for this axiom, but again his justification relies on 
addition axioms which are questionable. 

One can note that our map S --> S -  on subsets of P is a closure operation 
and that our minimal superposition postulate is closely related to the 
MacLane-Steinitz exchange axiom (Crapo & Rota, 1968). Thus the theory 
presented here is closely related to the theory of combinatorial geometries. 

Finally, we would like to mention that the axiom L,, 1 c L,,, implies 
mi =- m2 is not essential for this theory, and is included only to avoid certain 
minor technicalities. It is used only to prove that J is atomic. However, it 
can be shown that if  this axiom does not hold .~f can be embedded in a 
unique smallest atomic lattice. 
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